受験指導の現場から

予習する子の成績が伸び続けるメカニズム 大人になっても続く好循環とは? (1/2ページ)

吉田克己
吉田克己

 「予習と復習、どちらが大事?(どちらに時間を掛けるべき?)」―保護者の頭の中に必ず一度は浮かぶ疑問のようで、保護者面談でこの類の質問を受けることは珍しくない。

 極端なケースでは、某塾(の算数)のように、「予習はするな。予習をすると間違った解き方が身に付いてしまい、却って時間の無駄になる」と言い切っている例もある。

 もちろん、科目による考え方の違いもあるだろうし、中学受験なのか高校・大学受験なのかによっても見解は変わってくるだろう。実際、算数の予習をさせない塾でも、高校受験の授業では一部に「反転授業」を取り入れていたりする。

 ともあれ、科目や受験段階による差異はあっても、知識や解法の穴を埋めるための復習が欠かせないのは当たり前の話であり、この問いの立て方自体がナンセンスかもしれない。

予習の習慣は将来にまで好影響

 翻って予習の是非であるが―私見ながら、「思考力を要する単元に関しては、予習の便益は大きい(なかんずく長期的な観点ではすこぶる大きい)」と考えている。

 それは、予習(読むだけでもよい)を通して課題設定(疑問出し)を行い、授業でその課題(疑問)を解決する、というプロセスが、その子の将来の行動規範に大いに好影響をもたらすと踏んでいるからだ。

 大人の世界では、「まったく発言しないのであれば会議には出なくていい」「何の意見も持たずに打ち合わせにくるな」などと言われるが、あえてこれに当てはめれば、「何の疑問点もなく授業に出てこないで、何か一つ質問を考えてこよう」とでもなるだろうか。

ぜひ知ってほしい、「謎が解ける」感覚

 春期講習会(理科)に来ていた男子小学生が、最終日のアンケートにこんなことを書いていた。曰く、「いろんな謎が解けて、参加してよかった」と。この感覚を多くの生徒に知ってほしい。生徒の中にこの前向きな感覚が育ってくれば、「教師の役目は、奴らの中の眠っている好奇心を刺激してやることだ」(ドラゴン桜 桜木弁護士)との相乗効果で好循環が生まれる。

 例えば―前回の連載で皆既月食に触れたが―「地球の影に覆われているはずの月が、なぜ見えなくならずに、赤茶色の満月のように見えるのか?」

 ほとんどのテキストには皆既月食のときの写真は掲載されているが、赤茶色の満月のように見える理由まで説明しているテキストは少ない。皆既月食が起こる理由は説明されていても、そう見える理由が説明されていなければ、初めて読んだ生徒はたいがい「なぜ?」と思う。そして、この「なぜ?」が授業で解決されることが、生徒のやる気を膨らませることにつながる。

 理科について言えば、ファクトは書いてあっても理由が書かれていないことは往々にしてある。理由を等閑にして、「(そうなるものだと)覚えなさい」では、まともな授業にはならない。生徒が納得(理解)できる説明をすべき(解釈を示すべき)である。小学校であれば、アクティブラーニングの一環として、グループごとにその理由を考えさせて(調べさせて)発表させたりもしているはずだ。

朝日よりも夕日の赤色が濃いのはなぜ?

 さて、これは実際に中学の入試問題で取り上げられた自然現象なのだが、「朝日よりも夕日のほうが、赤色が濃いのはなぜか?」―不思議に思ったことはないだろうか。かなり奥の深い理由があるのであるが、選択問題ではなく(誘導を図りながらも)記述問題として出題されている。

 ちなみに、皆既日食のとき、太陽は向かって右側(西側)から欠けていくが、その理由の説明の仕方はというと、正鵠(せいこく)を射ているとは言い難いテキストがほとんどである。

 あるいは、豆電球回路と乾電池の寿命についてのこんな例はどうだろうか。

 豆電球1個に乾電池1個をつないだときの乾電池の寿命を〈1〉とする。豆電球の個数を変えずに、乾電池2個を並列につなぐと豆電球の明るさは変わらず(流れる電流の大きさは変わらず)、乾電池の寿命は〈2〉になる。これは、乾電池が持つ電気の量は2倍になるが、流れる(時間あたりの)電気の量が変化しないからである。

 それでは、乾電池2個を直列につなぐと豆電球は明るくなるが(流れる電流の大きさは2倍になるが)、このとき乾電池の寿命は何倍になるか?

 ふつうは(予備知識がなければ)、「乾電池が持つ電気の量が2倍になり、流れる電気の量も2倍になるから、乾電池の寿命は変わらず〈1〉」と考える。実際、4年生にこの質問をすると、迷いながらも「変わらない!」「〈1〉!」と答える生徒は少なくない。

Recommend

Ranking

アクセスランキング

Biz Plus